

GaAs MMIC Driver Amplifier

8GHz~13GHz Rev 1.0

Features

➤ Frequency: 8GHz~13GHz

Gain: 19dB

Output P₋₁dB: 32.5dBm
Supply Voltage: +5 ~+6V
Power-Added Efficiency:35%
Die Size: 2.01mm×1.25mm×0.1mm

General Description

The XT3913 is a wideband GaAs MMIC driver amplifier which operates between $8GHz\sim13GHz$. The amplifier has high PAE at output $P_{-1}dB$ power making it an ideal driver amplifier for high efficiency applications.

The XT3913 offers full passivation for increased reliability and moisture protection.

Typical Applications

- Point-to-Point Radios
- ➢ SATCOM
- Military and Space
- > Test and Measurement
- Radar

Functional Diagram

Electrical Performance ($T_A=25^{\circ}C,V_D=+6V,I_D=650mA,Z_0=50\Omega$)

Data obtained from 3.5-mm connector based test fixture, and this data is includes connecter loss and board loss

Parameter	Min.	Тур.	Max.	Units
Frequency Range		8~13		GHz
Small Signal Gain	-	19	-	dB
Small Signal Gain Flatness	1	±2	-	dB
Reverse Isolation	_	-42	_	dB
Input Return Loss	_	-12	_	dB
Output Return Loss	_	-13	_	dB
Power-Added Efficiency	_	35	_	%
Output Power for 1 dB Compression (P ₋₁ dB)	_	32.5	_	dBm
Drain Voltage(V _D)	5	-	6	٧
Supply Current(I _D)	_	650	730	mA

Absolute Maximum Ratings

Maximum Input Power	+17dBm	Operating Temperature	-55°C∼+85°C	
Junction Temperature	+150°C	Storage Temperature	-65°C∼+150°C	
Maximum V _D	+6.3V	Maximum V _G	-1.2V	

GaAs MMIC Driver Amplifier

8GHz~13GHz Rev 1.0

Typical Performance Curve

Data obtained from 3.5-mm connector based test fixture, and this data includes connecter loss and board loss

*Bias Conditions: $V_D = 6V$, $I_D = 650 \text{mA}$

Frequency (GHz)

Frequency (GHz)

ID(A) vs. Freq@OP-1dB

OP-1dB (dBm) 、 PAE (%) vs. Freq

GaAs MMIC Driver Amplifier

8GHz~13GHz Rev 1.0

Die Outline (all dimensions in um)

VD2、VD3、RF Bonding Pad Size:100x150um VG1、VD1、VG2、VG2A Bonding Pad Size:100x100um

Assembly Diagram

Chip Test Fixture

Components List

Reference Des.	Value	Part Number	Manuf.	Size
C1、C6、C7、C10	1uF	GRM155R61A105KE15D	Murata	0402
C2~C5、C8、C9	300pF	-	ANY	SLC

Notes

- 1. The XT3913 is biased with a positive drain supply and negative gate supply. when the drain voltage is set to 6 V. The recommended gate voltage is set to -0.5 \sim -0.75 V.
- 2. RF connections should be made as short as possible to reduce the inductive effect of the bond wire. Use of a 0.8 mil thermosonic wedge bonding is highly recommended as the loop height will be minimized. The RF input and output require a double bond wire as shown.
- 3. The backside of the XT3913 is RF ground. Die attach should be accomplished with electrically and thermally conductive epoxy only.
- 4. Bypass caps C1、C6、C7、C10 should be placed no farther than 1.5mm from the amplifier.

Attention:

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.